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4 Sample-Based Estimators 
Used by the Forest Inventory and 

Analysis National Information 
Management System

Charles T. Scott, William A. Bechtold,  
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James A. Westfall, Mark H. Hansen, and  
Gretchen G. Moisen1

4.1 Panels and Estimation

This chapter outlines prescribed core2 procedures for deriving population 
estimates from attributes measured in conjunction with the Phase 1 and 
Phase 2 samples. These estimation procedures also apply to those Phase 
3 attributes in common with Phase 2. Given the sampling frame and plot 
design described in the previous two chapters, many estimation approaches 
can be applied. In fact, one goal of the overall design is to maximize flexi- 
bility, so Forest Inventory and Analysis (FIA) data can be used to address a 
variety of analytical needs. 

Much of the flexibility inherent in the Enhanced FIA design is derived 
from the way panels are combined for analysis. This topic is addressed in 
chapter 5. For estimations involving a single panel or a periodic survey, 
the approach to estimation would proceed directly as outlined in chapter 4. 
When the estimation is for some combination of annual panels, then the 
estimation procedures discussed herein may require modification depending 
on the method used to combine the panels. Related modifications are 
discussed in conjunction with the two specific methods for combining 
panels presented in chapter 5 (secs. 5.2.1 and 5.2.2).

1 Charles T. Scott, FIA Program Manager, USDA Forest Service, Northeastern Research 
Station, Newtown Square, PA  19073; William A. Bechtold, Research Forester, USDA 
Forest Service, Southern Research Station, Asheville, NC 28802; Gregory A. Reams, FIA 
National Program Manager, USDA Forest Service, 1601 North Kent Street, Arlington, VA 
22209; William D. Smith, Research Quantitative Ecologist, USDA Forest Service, Southern 
Research Station, Research Triangle Park, NC 27709; James A. Westfall, Research Forester, 
USDA Forest Service, Northeastern Research Station, Newtown Square, PA  19073; Mark H. 
Hansen, Research Forester, USDA Forest Service, North Central Research Station, St. Paul, 
MN  55108; and Gretchen G. Moisen, Mathematical Statistician, USDA Forest Service, Rocky 
Mountain Research Station, Ogden, UT 84401.
2 First use of a glossary term in each chapter is in bold face.
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4.2 Phase 1

Stratification is a statistical tool used to reduce the variance of attributes 
of interest by partitioning the population into homogenous strata, such as 
forest and nonforest. It may also involve partitioning out a highly variable 
but small portion of the population. 

To use stratified sampling methods, the strata sizes (weights) must be either 
known or estimated. As discussed in chapter 2, strata weights commonly 
are estimated by classifying points on aerial photographs or pixels on 
satellite imagery. Full enumeration of an entire landscape (population) is 
possible with wall-to-wall satellite imagery, resulting in strata weights that 
can be treated as known values in the variance formulations. Whether the 
strata weights are known or estimated, strata classifications (e.g., forest 
and nonforest) from remote sensing are never perfectly accurate. Although 
this increases the variance of the resulting population estimates, it does 
not introduce any bias due to the interaction between Phases 1 and 2 in the 
estimation process.

4.2.1 Satellite Classification and Known Strata Weights

Using wall-to-wall satellite imagery and computer-aided classification, 
the population can be divided into strata of known size—typically forest, 
noncensus water, nonforest, or combinations of these. In this case the 
classified imagery divides the total area of the population (A

T
) into pixels 

of equal and known size (e.g., 30 m square with Landsat TM), and the 
classification assigns one of H strata to each of these pixels. Here, the 
stratum weight, W

h
 (h = 1,…,H), typically is determined as the number 

of pixels classified as stratum h divided by the total number pixels in the 
population of interest. The weights are known quantities that are fixed by 
the classification system and selected strata. As used here, “pixel” indicates 
either an individual pixel, or a non-overlapping block of multiple pixels. 
Each stratum, h, then contains n

h
 ground plots, each selected with known 

probability, where the Phase 2 attributes of interest are observed. Note that 
the strata sample sizes, n

h
, are random because ground-plot locations are 

chosen prior to stratification.

Satellite classification systems separate the reflectance values from each  
pixel into a set of H distinct values (i.e., ranges). Such systems can range 
from very complicated functions dependant on a number of different 
reflectance band values and ancillary data layers, to very simple step 
functions of a single reflectance band. A variety of automated classification 
schemes are available, but these rarely match FIA stratification require- 
ments. These must usually be modified or additional classifications must be 
performed to produce strata that are relevant to FIA estimation needs. 
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When using classified satellite imagery for stratification, one must know 
the location of each plot and each pixel, so that plots and pixels can be linked 
in the estimation process. FIA assigns each plot to one and only one stratum 
using the pixel corresponding to plot center. Typically this is done using 
a global positioning system (GPS) instrument for ground plots and geo-
reference information associated with the imagery for pixels. If GPS field 
data are not available, plot locations can be digitized manually from aerial 
photos or maps. 

Most of the estimation presented here is based on the assumption of equal 
probability sampling, where all elements of the population have the same 
probability of being sampled by a ground plot. This assumption can be 
violated if ground-plot information is used to help classify satellite imagery. 
Inevitably, ground-plot data will be used in the development of some classi- 
fication algorithms. Breidt and Opsomer (2004) show that for algorithms 
based on general linear models, this approach provides valid results and 
variances. Other types of classification algorithms (e.g., nonparametric) 
have not been similarly evaluated. 

It is also important to remember the importance of the pixel-plot link when 
changing or considering a change in the stratification algorithm. Two similar 
algorithms may divide a population into very similar strata that have similar 
or identical names. The application of a different classification system will 
not only change the W

h
 (even when they have identical names), but also the 

strata assignments of ground plots.

4.2.2 Aerial Photography and Estimated Strata Weights

In some cases, especially when using aerial photos, it is not practical or cost 
effective to divide imagery into strata of known sizes. Strata sizes then may 
be estimated using photo-plot sampling with manual interpretation, and 
applying double sampling for stratification as opposed to the stratified 
estimation that occurs when strata weights are known. When double 
sampling for stratification is used in conjunction with satellite imagery or 
other spatial layers, only a sample of pixels is classified, as opposed to the 
wall-to-wall estimation described in the previous section. This relieves some 
of the computational burden of more complex computer-aided classification 
methods. The loss of precision when such methods are applied to a subset 
of pixels is minimal when large Phase 1 sample sizes are used (Moisen and 
Edwards 1999).

Under double sampling for stratification, a set of sample points (i.e., Phase 1 
plots) is placed on aerial photo or satellite coverage of the population. Phase 
1 plots are then assigned to strata by photo interpretation or computer-aided 



46

classification algorithm. Phase 1 plots are usually placed on a grid, typically 
every 200 to 300 acres. The Phase 2 and Phase 3 plots usually are a subset 
of the Phase 1 photo plots. Any Phase 2 and Phase 3 plots that are not must 
also be classified, but their values are not used in developing the estimates 
of strata sizes. Here: 

= total number of Phase 1 plots (pixels) sampled in the population

= number of Phase 1 plots (pixels) classified as belonging to stratum h  
(h = 1,…,H, H = total number of strata)

4.2.3 Combining Small Strata and Populations

Because sample sizes are random with respect to strata, some may contain 
too few plots to compute a reliable mean and variance. Experience indicates 
that a minimum of four Phase 2 plots per stratum are required. If less than 
four, then similar strata must be collapsed (combined) until the minimum is 
attained. Because stratification schemes may vary regionally to accommo- 
date resource differences, there are no prescribed rules by which strata are 
combined.

The minimum-sample-size rule also affects some small populations or popu- 
lations with little forest (e.g., some counties in the Eastern or Great Plains 
regions of the United States). Populations with fewer than 12 forested Phase 2 
plots should thus be combined with adjoining counties (i.e., populations) 
forming what is termed as a “super-county.” The use of super-counties will 
be especially important when using only a subset of panels.

4.3 Phase 2

This chapter builds on chapter 3 by specifying the population estimators 
used for calculation of area and other attributes of interest associated with 
mapped plots. Generally, these attributes are summed for each plot (after 
adjustment to correct for any plots that overlap the population boundary), 
and then averaged across plots in the stratum. The strata means are then 
combined using the Phase 1 strata weights to form a population mean. This 
mean is then expanded to a total using the total land area in the population. 
This approach to estimation is first described for area attributes, and then 
other attributes, because the formulas are somewhat different. Examples of 
the estimation procedures discussed below are provided in the supplementary 
documents “Examples of FIA Point-in-Time Estimation Procedures for 
Several Common Cases” and “Examples of FIA Change-Component 
Estimation Procedures for Several Common Cases” at http://srsfia2.fs.fed.
us/publicweb/statistics_band/stat_documents.htm.
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4.3.1 Estimation of Area by Stratum by Domain  
 (Row and Column) Attributes

For a given attribute of interest (e.g., forest area), estimates of population 
totals and domain totals (e.g., area by forest type and stand size class) are 
produced similarly. The only difference is that different restrictions (filters) 
are placed on each cell of an output table depending on which domain (row 
or column) the cell is in. Mapped condition classes (e.g., forest type) are 
often used to specify domains, but other attributes also can be used (e.g., 
species).

Row and column attributes must be discrete categorical variables. Continu- 
ous attributes can be converted into discrete categories by dividing them into 
classes (e.g., diameter classes). The attribute of interest is “summed” into a 
cell only when it satisfies the row and column requirements (i.e., when it is 
in the domain of interest). Each plot and tree has an associated indicator 
function,  (or ), which is 1 if the attribute is in the domain d of
interest, or 0 if not. For example, when estimating the area in northern hard- 
wood (row) sapling stands (column), the indicator function is 1 when the 
specified forest type and stand-size requirement are satisfied; otherwise it is 0. 
This method is described in Cochran (1977) for estimating domain (cell) 
means. 

4.3.1.1 For Each Table Cell, Compute the Attribute of Interest  
 for Each Plot

Each plot is assigned to only one stratum based on the Phase 1 stratification 
of the plot center. For area estimation, the attribute of interest is the 
proportion of the plot in the domain of interest: 

       

(4.1)

where

 proportion of plot i in the domain of interest d, for plots assigned 
to stratum h, adjusted for stratum h plots that overlap the population 
boundary 

 mapped area (acres) of subplot (macroplot) j covering condition 
k on plot i assigned to stratum h (The area is computed using the largest 
area mapped, which is the subplot except in the Pacific Northwest (PNW) 
where the macroplot is used.)
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 zero-one domain indicator function, which is 1 if condition k 
on subplot (macroplot) j of plot i assigned to stratum h belongs to the 
domain of interest d

 the number of conditions that exist on subplot (macroplot) j of plot 
i assigned to stratum h 

a
m
 = total area of the largest-sized plot on which area attributes are 

mapped (i.e., four times the subplot or macroplot area)

mh
 = mean proportion of stratum h mapped plot areas falling within the 

population (see equation 4.2)

Table margins (row and column totals) are treated like any other cell. 
Additivity is a property of the table construction, not the estimators. Most 
tables will be additive (i.e., the cells in the table body will add to totals in 
the margins such as area by forest type and stand size). However, a table of 
the area containing combinations of species and diameter classes will not 
be additive, because each cell represents the number of acres on which the 
particular species and diameter class combination occurs.

4.3.1.2 Adjustment for Partial Plots Outside the Population

Equation 4.1 essentially treats all areas sampled on stratum h plots equally— 
every square foot is expanded equally whether it is part of a partial plot  
or not. For a given population, dividing by 

mh
 in equation 4.1 adjusts the 

plot observations to account for any portions of stratum h plots falling 
outside the population. Note that  0 for condition classes outside the 
population in equation 4.1, because conditions outside the population are 
never conditions of interest. Reasons for condition classes being outside the 
population include: 

• Partial plots that straddle an international boundary (i.e., Canada or  
 Mexico)

• Partial plots that straddle a mapped ownership population boundary  
 (e.g., national forest)

• Whole or partial plots within the population that are nonsampled (e.g.,  
 denied access or hazardous conditions)

• Whole or partial plots in census water (unless census water is estimated,  
 i.e., included in A

T
) (Note that FIA currently subtracts census water from  

 A
T
, but anticipates that census water will be estimated when precise  

 digitized census water boundaries become available from the U.S. Census  
 Bureau. If and when census water is estimated from the FIA sample, a  
 Phase 1 stratum will likely be created for it.) 
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If all plots are entirely within the population boundaries, then 
mh

 would 
be 1. Otherwise, the average mapped-plot area actually sampled within the 
population is divided by the standard plot area, a

m
. This approach was taken 

as a way of handling the potential bias introduced by ignoring portions of 
plots straddling population boundaries. Essentially, this creates a buffer 
around the population to ensure that plots which are only partially inside the 
population of interest are included in the estimation. More area is sampled, 
but more plots are also taken into the sample. Multiplying the totals by the 
larger area is on average equivalent to the adjustment made by using 

mh
: 

       

(4.2)

where

n
h
 = number of ground plots with Phase 1 assignments to stratum h (For 

initial area tables, this includes all plots sampled with any portion of a 
subplot (macroplot) in the population. For subsequent tables, any plots 
that are entirely nonsampled are excluded.)

 zero-one in-sample indicator function, which is 1 if condition 
k on subplot (macroplot) j of plot i assigned to stratum h is within the 
boundaries of the population (Nonsampled areas are included in initial 
area tables in order to estimate their areas, but are zero otherwise. 
Missing values are also treated as zero values.)

Clearly, there are cases where 
mh

 will not be 1, meaning that 
mh

 is a con- 
stant for a given stratum, but varies between strata and populations. The 
variation due to nonsampled plots and plots extending beyond population 
boundaries is expected to be small enough to be ignored. One particular 
area of concern is the checkerboard ownership pattern in the West where 
National Forest System (NFS) boundaries may be treated as population 
boundaries. FIA is evaluating the frequency of plots that straddle NFS 
boundaries and may switch to the ratio-of-means estimators described by 
Zarnoch and Bechtold (2000), if necessary. 

4.3.1.3 Compute Strata Means and Variances

Plot values are averaged within each stratum. In the case of simple random 
sampling, this is the final estimate because simple random sampling is just 
stratified sampling with a single stratum.

The stratum mean is the sum of the plot observations, P
hid

, divided by the 
number of plots in the stratum, n

h
: 
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(4.3)

with variance estimator: 
 

       

(4.4)

Note that    is the mean of field-based observations in domain d within 
each Phase 1 stratum. This means that some plots classified as forest on the 
ground may have been assigned to a nonforest stratum and vice versa. These 
are not viewed as “misclassifications”, but as strata with less than ideal 
homogeneity. The estimators remain unbiased. 

4.3.2 Estimation of Population Totals and Their Variances

Generally, individual counties are the populations of interest (i.e., the basic 
building blocks for estimation). Counties may be divided into subpopula- 
tions that are processed independently. This is the case when a portion of a 
county has an intensified Phase 2 sampling grid, has enumerated acreages, 
or has a measurement cycle that differs from the rest of the county. These 
scenarios are not uncommon when sampling land owned by public agencies 
[i.e., NFS, Bureau of Land Management (BLM), and National Park Service 
(NPS)]. Because populations and subpopulations are mutually exclusive, 
estimated totals are additive. Likewise, because different populations and 
subpopulations are independent, the associated variance estimates are also 
additive. Thus, totals from groups of counties can be combined to formulate 
State and regional totals; or segments of NFS land, by county, can be com- 
bined to yield totals for a specific national forest. County areas provided 
by the U.S. Census Bureau, which are used in the estimation of population 
totals, are updated at least every 10 years. NFS and BLM provide similar 
area totals for their lands, and totals by county if they have intensified or 
otherwise altered the sampling effort on their lands. 

As first noted in equation 4.2, nonsampled plots present an estimation 
problem that requires more attention than plots that are otherwise out of the 
population. Because field crews cannot reliably ascertain the actual land 
use of such plots, initial area tables in FIA reports will report the proportion 
of total area designated as nonsampled. However, in all subsequent tables, 
these plots (or the nonsampled portions of them) will be processed as if they 

hd
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were out of the population. This approach either reduces the sample size 
(n

h
), or the mean proportion of stratum h observed plot areas falling within 

the population, or both. The result is to adjust upward the number of acres 
represented by the accessed plots, or portions of them, in each stratum. Thus 
the area that could not be accessed is redistributed based on the accessible 
plots within each stratum. This essentially replaces nonsampled plots with 
the strata means and increases the strata variances due to the reduction in 
sample size. This approach has the advantage of simplicity, but has the 
potential to incur bias if the nonsampled plots are not representative of the 
rest of the population. Other methods of accounting for nonsampled areas 
are under investigation, including remote sensing both for direct measure- 
ment of a subset of attributes and for use in identifying similar plots for 
imputation purposes. 

In the simple random sampling case, there is only one stratum, so totals 
are estimated by multiplying the population mean by the total area in the 
population. FIA rarely uses simple random sampling, but it has been used 
for Forest Health Monitoring (FHM) and is useful in responding to special 
requests where stratification data may be lacking. Processing protocols for 
the FIA plot design under a simple random sampling approach using ratios 
of means are discussed in detail by Zarnoch and Bechtold (2000).

To estimate the total area in each domain when the population has been 
stratified, the strata means are averaged using the strata weights and then 
multiplied by the total land area in the population. The estimated total is 
given for the stratified estimation and double sampling for stratification 
cases, respectively, as:  

     

(4.5)

and

where

A
T
 = total area in the population in acres

 estimated proportion of the population in the domain of interest d

W
h
 = weight for stratum h (i.e., the proportion of the population area, A

T
, 

that is in stratum h)
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An approximation of the variance of the total area in the stratified estima- 
tion (and the simple random sampling) case, where strata sizes are known, 
is adapted from equation 5A.42 in Cochran’s (1977) finite sampling frame- 
work. An estimate of this population variance (finite population correction 
factors ignored) is given by: 

    

(4.6)

The first term is for stratification, assuming proportional allocation, and the 
second term reflects the fact that the sample sizes are not fixed by strata in 
advance. 

Double sampling for stratification applies when the strata weights are esti- 
mated. The variance of total area in this case is adapted from equation 12.32 
in Cochran (1977), again ignoring finite population correction factors. The 
second term accounts for the fact that strata sizes are estimated: 

   

(4.7)

As noted above, totals and their variances from different populations are 
additive. Thus the variance of a total across multiple populations or subpop- 
ulations is the sum of their variances. Examples of how to apply equations 
4.1 through 4.7 are given in spreadsheet form in the supplementary docu- 
ment “Examples of FIA Point-in-Time Estimation Procedures for Several 
Common Cases” at http://srsfia2.fs.fed.us/publicweb/statistics_band/stat_
documents.htm (see sections “plot summary”, “problem number 1”, and 
“problem number 2”).

4.3.3 Estimation of Other Attributes

Population totals for attributes other than area usually are calculated by 
summing attributes to the plot level and then averaging at the stratum level. 
Indicator functions are used to identify the attribute of interest (e.g., total 
volume of white oak) in the domain of interest (e.g., oak-pine  stands). The 
attribute of interest is summed for each plot and then divided by the observed 
plot area and the mean proportion of stratum h observed plot areas falling 
within the population, yielding an estimate of the attribute of interest on a 
per-unit-area basis: 
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(4.8)

where

 attribute of interest for tree t on macroplot, subplot, or microplot j 
of plot i assigned to stratum h

 zero-one domain indicator function, which is 1 if tree t on subplot 
j of plot i assigned to stratum h belongs to the domain of interest d

a
o
 = total area normally used to observe the attribute of interest on a plot 

(i.e., four times the microplot, subplot, or macroplot area)

oh
 = mean proportion of stratum h observed-plot areas falling within the 

population (see equation 4.9)

In equation 4.8, dividing by 
oh

 adjusts the plot observations to account for 
any portions of stratum h plots falling outside the population: 

    

(4.9)

where

 area normally used to observe the attribute of interest (microplot, 
subplot, or macroplot j) covering condition k on plot i assigned to stratum h

In equation 4.8, dividing by the observed plot area and by the proportion of 
plots outside the population allows attributes such as number of trees across 
all diameter classes to be summed across plot types while accounting for any 
differences in the proportion of the various plot types that are outside the popu- 
lation. For example, if y

hid
 is the number of trees 1.0-inch diameter at breast 

height (d.b.h.) and larger sampled on microplots and subplots, then equation 
4.8 should include a term for each plot type. This adjustment is the main 
difference between the estimators described herein and the ratio-of-means 
estimators outlined by Zarnoch and Bechtold (2000), where population 
totals are computed on the basis of each plot size separately, then summed 
for all plot sizes. Because totals for the latter alternative are not independent, 
the variance is complicated by the need to include a covariance term among 
plot sizes. We opted for a simpler approach, where all estimates are combined 
at the plot level and then treated as a single attribute of interest when calcu- 
lating population totals. Using this method, the variance is much easier to 
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compute, and the resulting estimate (equation 4.10) is equivalent to the 
separate approach. When combining subplot and microplot values, the 
attribute of interest is computed as: 
 
 

 

     

(4.10)

where

  attribute of interest for tree t on microplot j of plot i in stratum h

 zero-one domain indicator function, which is 1 if tree t on micro- 
plot j of plot i assigned to stratum h belongs to the domain of interest d 

a9
o
 = total microplot area

  = mean proportion of stratum h microplot areas falling within the 
population (equation 4.9)

The plot attributes from either equation 4.8 or equation 4.10 are then 
summed across all plots within each stratum and divided by the total 
number of plots in the stratum to yield the stratum mean of the y

hid
: 

 
 

         

(4.11)

with estimated variance: 

 
 
 

       

(4.12)

As was the case for area, the strata means are averaged using the strata 
weights, then multiplied by the total land area. The estimated total is given 
for the stratified estimation and double sampling for stratification cases, 
respectively, as: 
 
 

       

(4.13)

oh
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or

where

population mean of the attribute of interest in the domain of interest d

As with the area estimate when strata weights are known, an approximation 
to the variance of the attribute total in the stratified estimation (and the 
simple random sampling) case was developed in the same way as for 
equation 4.6: 

    

(4.14)

The estimated variance of the attribute total in the double sampling for 
stratification case is again adapted from equation 12.32 in Cochran (1977): 

   

(4.15)

As noted in section 4.3.2, totals and their variances from different popula- 
tions are additive for a given domain. Thus the variance of a total across 
multiple populations or subpopulations is the sum of their variances. Although 
the additivity property is also true for means, sums of means generally are 
not useful. To obtain a mean over populations, the totals should be added 
and divided by the total area of the populations. The result is a mean weighted 
by the population areas. An example of how to apply equations 4.8 through 
4.15 is given in problem number 3 of the supplementary document “Exam- 
ples of FIA Point-in-Time Estimation Procedures for Several Common Cases” 
at http://srsfia2.fs.fed.us/publicweb/statistics_band/stat_documents.htm.

4.3.4 Estimation of Ratios

Often, interest is not in the totals but in the attribute of interest expressed on 
a per-acre, per-condition (stand), or per-tree basis. An approach that is also 
compatible with the aforementioned estimates of population totals is the 
ratio-of-means estimator, wherein the numerator is the estimated attribute 
total and the denominator depends on the ratio to be estimated. The three 
cases can all be estimated using one of the following general formulas. 
The first is for stratified estimation where strata weights are known and the 
second for double sampling where strata weights are estimated:
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or                                                                                                             (4.16)
 
 
 

The strata means for the denominator,         , are computed in the same 
manner as the numerator. Note that the numerator and denominator have 
different domains of interest, with d being a subset of d9 (e.g., 12-inch 
oaks in oak-hickory stands). If the denominator is an area attribute, then 
x

hid9
 is estimated using equation 4.1 and the area attribute replaces P

hid
. If 

the denominator is a tree or other attribute, then x
hid9

 is estimated using 
equation 4.8 and the attribute replaces y

hid
. The choice of the individual plot 

observations, x
hid9

, is described in sections 4.3.4.1 through 4.3.4.3 for three 
common situations. 

The variance estimator from equation 5.6.10 in Särndal and others (1992) is: 

    

(4.17)

In the stratified estimation case, the right-hand-side variances are computed 
using equation 4.6 for area attributes and equation 4.14 for other attributes. 
The covariance is estimated as: 
 
 

 

(4.18)

where 

 
 

     

(4.19)
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In the double sampling for stratification case, the variance is approximated 
by assuming the covariance can be computed similarly to the area attributes 
(equation 4.7) and other attributes (equation 4.15) 

(4.20)

 
Equations 4.16 and 4.17 can be used for all three estimation of ratio cases—
to express values on a per-acre, per-tree, or per-condition basis.

4.3.4.1 Estimation on a Per-Acre Basis 

Often interest is in expressing the attribute of interest on a per-acre basis. 
This can be estimated by dividing  in equation 4.13 by the total surface 
area in the population, A

T
. Because the area is known, the variance of the 

ratio is simply the variance of the total (equation 4.14) divided by the square 
of the total area, A

T
. 

However, interest is more commonly in the attribute total expressed on a per- 
forested-acre basis—a ratio estimate. The denominator of equation 4.16 can 
be the estimate of total forest area  computed using equation 4.5, or the 
area of another domain such as the area in a specific forest type. When the 
denominator is derived from equation 4.5, the x

hid9
 is equal to P

hid
 in equation 

4.1 which is then used to compute the X values in equations 4.16 through 
4.20.

Indicator functions are used to specify the domains and attributes of interest 
that define y

hi
 and x

hi
. These may or may not change for various cells in the 

tables, depending on the ratio of interest. For example, the value of x
hid9

 can 
be the same for all values in a table, such as those used in computing . 
This is useful for estimating additive tables, such as stand tables with numbers 
of trees per acre by species and diameter class. Alternatively, the value of 
x

hid9
 might change for each cell, such as the area by forest type and stand size, 

so that the attribute average can be estimated for each combination (domain). 
An example of how to apply equations 4.16 through 4.20 for estimation on a 
per-acre basis is given in problem number 4 of the supplementary document 
“Examples of FIA Point-in-Time Estimation Procedures for Several Common 
Cases” at http://srsfia2.fs.fed.us/publicweb/statistics_band/stat_documents.
htm.
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4.3.4.2 Estimation on a Per-Condition (Per-Stand) Basis 

A few attributes are only observed at the condition (or stand) level, such as 
stand age. To compute average stand age requires a slight modification of 
the approach to the y

hid
 attribute. The approach is to weight the condition 

attribute, y
hik

, by the area in the condition of interest on the plot: 
 

                                                                                                      

(4.21)

The denominator reflects the proportion of the area sampled in the condition 
of interest: 

                                                                                                      

(4.22)

The result is the average of the attribute of interest weighted by the area in 
which it occurs. These values of y

hid
 and x

hid9
 are then used in equations 4.16 

through 4.20. An example of how to apply equations 4.16 through 4.22 for 
estimation on a per-stand basis is given in problem number 5 of the supple- 
mentary document “Examples of FIA Point-in-Time Estimation Procedures 
for Several Common Cases” at http://srsfia2.fs.fed.us/publicweb/statistics_
band/stat_documents.htm.

4.3.4.3 Estimation on a Per-Tree Basis 

For some applications, the attribute of interest is an individual tree attribute, 
such as average tree height or conks per tree, where the ratio of interest is 
expressed on a per-tree basis. The ratio estimator then becomes the estimate 
of the population total for the attribute of interest, , divided by the total 
number of trees, , in the population. Thus, y

hid
 is the sum of tree attributes 

observed on plot i in stratum h in the domain of interest; and x
hid9

 is the 
number of trees observed on plot i in stratum h in the domain of interest. 
Those values are then used in equations 4.16 through 4.20. An example of 
how to apply equations 4.16 through 4.20 for estimation on a per-tree basis 
is given in problem number 6 of the supplementary document “Examples of 
FIA Point-in-Time Estimation Procedures for Several Common Cases” at 
http://srsfia2.fs.fed.us/publicweb/statistics_band/stat_documents.htm.
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4.3.5 Computation of Sampling Errors

Sampling errors are used by FIA to reflect the accuracy of the estimates. 
Expressed on a percentage basis in order to enable comparisons between the 
precision of different estimates, sampling errors are computed by dividing 
the estimate into the square root of its variance:

 

                                                                                                      

(4.23)

Assuming normality of the distribution of estimates, the percent sampling 
error can be used to compute an approximate 67 percent confidence interval. 
If the sampling error is doubled, then an approximate 95 percent confidence 
interval can be formed. A better approximation is achieved by using the 
appropriate Student’s t-values.

4.3.6 Components of Change

FIA inventories are designed to measure net change over time, as well as the 
individual components of change that constitute net change (e.g., growth, 
removals, mortality). Change estimates are computed for two sequential mea- 
surements of each inventory panel. Upon remeasurement, a new initial 
inventory is established for remeasurement at the next scheduled inventory. 
As such, computation of change components is not intended to span more 
than one inventory cycle. Rather, the change estimation process is repeated 
cycle by cycle. This simplifies field protocols and ensures that change esti- 
mation is based on short and relatively constant time intervals (e.g., 5 years). 
Change estimates for individual panels are combined across multiple panels 
in the same manner as panels are combined to obtain current inventory 
parameters such as total standing volume.

FIA recognizes the following components of change as prescribed core 
variables; they usually are expressed in terms of growing-stock or all-live 
volume, where t is the initial inventory of a measurement cycle, and t+1 is 
the terminal inventory:

G
S
 = survivor growth—the growth on trees tallied at time t that survive until 

time t+1.

I = ingrowth—the volume of trees at the time that they grow across the 
minimum d.b.h. threshold between time t and time t+1. The estimate is 
based on the size of trees at the d.b.h. threshold which is 1.0 inch for all-
live trees and 5.0 inches for growing-stock trees. This term also includes 
trees that subsequently die (i.e., ingrowth mortality), are cut (i.e., ingrowth 
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cut), or diverted to nonforest (i.e., ingrowth diversion); as well as trees that 
achieve the minimum threshold after an area reverts to a forest-land use 
(i.e., reversion ingrowth).

G
I 
= growth on ingrowth—the growth on trees between the time they grow 

across the minimum d.b.h. threshold and time t+1.

R = reversion—the volume of trees on land that reverts from a nonforest 
land use to a forest land use (or, for some analyses, land that reverts from 
any source to timberland) between time t and time t+1. The estimate is 
based on tree size at the midpoint of the measurement interval. Tree size at 
the midpoint is modeled from tree size at time t+1.

G
R
 = reversion growth—the growth of reversion trees from the midpoint of 

the measurement interval to time t+1. Tree size at the midpoint is modeled 
from tree size at time t+1. This term also includes the subsequent growth on 
ingrowth trees that achieve the minimum diameter threshold after reversion.

M = mortality—the volume of trees that die from natural causes between 
time t and time t+1. The estimate is based on tree size at the midpoint of the 
measurement interval (includes mortality growth). Tree size at the midpoint 
is modeled from tree size at time t.

G
M
 = mortality growth—the growth of trees that died from natural causes 

between time t and the midpoint of the measurement interval. Tree size at 
the midpoint is modeled from tree size at time t. This term also includes the 
subsequent growth on ingrowth trees that achieve the minimum diameter 
threshold prior to mortality.

C = cut—the volume of trees cut between time t and time t+1. The estimate 
is based on tree size at the midpoint of the measurement interval (includes 
cut growth). Tree size at the midpoint is modeled from tree size at time t. 
Trees felled or killed in conjunction with a harvest or silvicultural operation 
(whether they are utilized or not) are included, but trees on land diverted 
from forest to nonforest (diversions) are excluded.

G
C
 = cut growth—the growth of cut trees between time t and the midpoint 

of the measurement interval. Tree size at the midpoint is modeled from tree 
size at time t. This term also includes the subsequent growth on ingrowth 
trees that achieve the minimum diameter threshold prior to being cut.

D = diversion—the volume of trees on land diverted from forest to nonforest 
(or, for some analyses, this may also include land diverted to reserved 
forest land and other forest land), whether utilized or not, between time 
t and time t+1. The estimate is based on tree size at the midpoint of the 
measurement interval (includes diversion growth). Tree size at the midpoint 
is modeled from tree size at time t.
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G
D
 = diversion growth—the growth of diversion trees from time t to the 

midpoint of the measurement interval. Tree size at the midpoint is modeled 
from tree size at time t. This term also includes the subsequent growth 
on ingrowth trees that achieve the minimum diameter threshold prior to 
diversion.

FIA recognizes the following components of change as prescribed optional 
variables:

CI = cull increment—the net reduction in growing-stock volume due to 
reclassification of growing stock trees to cull trees between two surveys. 
Cull increment is the volume of trees that were growing stock at time t, 
but cull at time t+1. The estimate is based on tree size at the midpoint of 
the measurement interval (includes cull increment growth). Tree size at the 
midpoint can be modeled from tree size at time t, time t+1, or both. 

G
CI

 = cull increment growth—the growth to the midpoint of the measurement 
interval between time t and t+1 of trees that were growing stock at time t, 
but cull trees at time t+1. Tree size at the midpoint can be modeled from tree 
size at time t, time t+1, or both.

CD = cull decrement—the net gain in growing-stock volume due to reclassi- 
fication of cull trees to growing stock trees between two surveys. Cull decre- 
ment is the volume of trees that were cull at time t, but growing stock at time 
t+1. The estimate is based on tree size at the midpoint of the measurement 
interval. Tree size at the midpoint can be modeled from tree at time t, time 
t+1, or both.

G
CD

 = cull decrement growth—the growth from the midpoint of the measure- 
ment interval to time t+1 on trees that were cull at time t, but growing stock 
at time t+1. Tree size at the midpoint can be modeled from tree size at time 
t, time t+1, or both.

Except for R, D, G
D
, and G

R
, all components listed above are computed from 

plot areas where land use is defined as forest at both time t and time t+1. 
Note that it is not possible to measure the terminal d.b.h. of all trees that 
were cut, died, or diverted to a nonforest land use. To minimize potential 
bias associated with the growth of these trees, estimates of G

M
, G

C
, G

D
, D, 

R, and G
R
 are modeled on the basis of the measurement-interval midpoint. 

The midpoint is calculated as ∆
t 
/ 2, where ∆

t
 is the time in years (rounded 

to the nearest 10th) between measurements for an individual plot. Models 
to predict midpoint tree sizes are developed regionally and may include 
a variety of factors, including terms to account for slowed growth on 
mortality trees.
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The use of midpoint tree sizes creates special situations where careful atten- 
tion is needed to account for all change components. Particularly notable are 
ingrowth trees that assume a status other than survivor. For instance, between 
time t and time t+1, a tree may cross the 5.0-inches d.b.h. threshold (ingrowth), 
grow to 5.4-inches d.b.h., and then die. Under those circumstances, there would 
be three components of change: (1) Ingrowth (I), the volume at 5.0-inches 
d.b.h.; (2) Mortality growth (G

M
), the volume growth from 5.0-inches d.b.h. 

to 5.4-inches d.b.h.; and (3) Mortality (M), the volume at 5.4-inches d.b.h. 
Similar circumstances occur where ingrowth trees are associated with cut- 
ting, reversions, and diversions. Such situations implicitly require that mid- 
point tree sizes be modeled for all trees 1.0-inch d.b.h. and larger in order 
to check for trees that may have crossed the tree diameter threshold before 
removal or death.

For reporting growth and change, the individual components are usually 
combined as follows, and expressed either in terms of growing-stock or all-
live volume:

Gross ingrowth = I + R 

Accretion = G
S
 + G

I
 + G

R
 + G

M
 + G

C
 + G

D

Gross growth = gross ingrowth + accretion

Mortality = M 

Removals = C + D 

Net growth = gross growth – mortality 

Net change = net growth – removals 

The above terms for accretion and net growth are modified as follows for 
FIA regions that elect to produce additional output containing optional 
expressions of cull increment and decrement. Note that these optional terms 
are relevant only when components of change are expressed in terms of 
growing-stock volume: 

Accretion = G
S
 + G

I
 + G

R
 + G

M
 + G

C
 + G

D
 + G

CI
 + G

CD
 

Net growth = gross growth – mortality + CD – CI

In addition to volume, all change components may also be expressed in terms 
of basal area or weight. More commonly, some (I, R, M, C, D, CI, and CD) 
are occasionally expressed as numbers of trees.

A variety of estimators have been proposed for the various components of 
change (Beers and Miller 1964, Gregoire 1993, Roesch and others 1989, 
Van Deusen and others 1986). When only one fixed-size plot is involved, 
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estimation of change components is very straightforward and most estimators 
are equivalent. This is the case for most FIA reporting purposes because 
volumes generally are reported in terms of growing stock, which is based 
on trees 5.0-inches d.b.h. and larger that are only recorded on the subplot 
(except PNW which also uses macroplots). 

For regions using the macroplots, or for expressions of growth involving 
microplot trees (e.g., growth of trees 1.0-inch d.b.h. and larger), change 
estimation is complicated by trees that grow from one plot size to the next. 
This requires techniques designed for variable-radius plots. Historically, 
FIA units have used one of two methods for calculating components of 
change for variable-radius plots—Beers and Miller (1964) or Van Deusen 
and others (1986). Because the Van Deusen estimator is more appropriate 
for prism sampling and FIA has moved away from prism sampling, we have 
decided to use the simpler Beers-Miller approach.

The Beers-Miller estimator weights all survivor growth (G
S
) on the basis of 

plot size at time t:

                                                                                
(4.24)

where

s
2
 = tree size at time t+1 weighted on the basis of plot size at time t 

s
1
 = tree size at time t weighted on the basis of plot size at time t

Ingrowth, I, is defined as those trees on the microplot that grew across the 
1.0-inch threshold:

                                                                                  
(4.25)

where

s
dbh=1.0 

= the size of an ingrowth tree at the 1.0-inch d.b.h. threshold and 
growth on ingrowth as

                                                                          (4.26)

Both s
2
 and the size of the tree at 1.0-inch d.b.h. (s

dbh=1.0
) are weighted on the 

microplot basis for trees on the microplot that were < 1.0-inch d.b.h. at time 
t but greater than 1.0 inch at time t+1. Note that the Beers-Miller estimator 
ignores trees that grow onto the subplot from outside the microplot.

When estimating change, individual trees are placed into the appropriate 
change-component category(s). Tree attributes associated with the change-
component of interest are then summarized to the plot level using equations 
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4.8 and 4.10, annualized by dividing plot-level periodic values by the number 
of years between the initial and terminal measurements of each plot, and 
summarized to the population level as specified in equations 4.11 and 4.13. 
The components of change are converted to average annual values as 
follows, where ∆

t
 is the time in years (rounded to the nearest 10th) between 

measurements for an individual plot:

Annual gross ingrowth = (I + R) / ∆
t
 

Annual accretion = (G
S
 + G

I
 + G

R
 + G

M
 + G

C
 + G

D 
) / ∆

t

Annual gross growth = annual gross ingrowth + annual accretion

Annual mortality = M / ∆
t
 

Annual removals = (C + D) / ∆
t
 

Annual net growth = annual gross growth – annual mortality 

Annual net change = annual net growth – annual removals 

Annualized values for accretion and net growth for regions that include the 
optional expressions of cull increment and decrement would be: 

Annual accretion = (G
S
 + G

I
 + G

R
 + G

M
 + G

C
 + G

D
+ G

CI
 + G

CD 
) / ∆

t

Annual net growth = annual gross growth – annual mortality + (CD – CI) / ∆
t

Observe that some of the change components pertain to trees on conditions 
that remained in forest for an entire inventory cycle; some are based on trees 
and areas that become forest between the initial and terminal inventory of 
a cycle (reversions); and some pertain to trees on conditions removed from 
the forest land base (diversions). Improved estimates of change can be 
obtained by stratification on the basis of both initial and terminal land use: 
(1) Forest to forest, (2) Forest to nonforest, (3) Nonforest to forest, and (4) 
Nonforest to nonforest. This might also be expanded to include the finer 
subsets of forest recognized by FIA such as timberland, reserved forest land, 
and other forest land. 

This requires classification of the same Phase 1 points at both time t and 
time t+1—either photo interpretation of the same photo plots if photography 
was used or classification of the same pixels if satellite imagery is used. 
Note that the same collapsed strata should be used for both current and 
change estimates if the results are to be compatible. 

Once the strata weights are assigned, estimation by domains within strata 
follows the same procedure outlined for current inventory parameters. For 
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standard reporting purposes, domains identified or partitioned by forest 
attributes (e.g., owner group) usually are defined on the basis of initial classi- 
fications for forest-nonforest and forest-forest parameters; and domains for 
nonforest-forest inventory attributes are defined on the basis of terminal 
classifications. Examples of computational procedures for change estimation 
are provided in the supplementary document “Examples of FIA Change-
Component Estimation Procedures for Several Common Cases” at http://
srsfia2.fs.fed.us/publicweb/statistics_band/stat_documents.htm.

4.4 Expansion Factors

When periodic inventories and flat files were the FIA standards, it was con- 
venient to calculate a small set of expansion factors by which individual 
plot-level or tree-level observations could be converted to their population-
level equivalents. This allowed population totals to be obtained via summa- 
tion, which greatly simplified the estimation process. Expansion factors were 
popular with external FIA clients, many of whom used this concept to build 
their own processing systems. The tradeoff for such simplicity is that the 
use of expansion factors precludes the ability to calculate variances. At best, 
the variances of estimators derived from expanded values can only be approx- 
imated, and these approximations are known to be poor (Alegria and Scott 
1991).

Expansion factors are less practical with panelized inventory systems, which 
are designed to increase analytical flexibility by allowing panels to be com- 
bined in a variety of ways. Each different panel combination produces a 
unique set of expansion factors, rendering expansion factors associated with 
panel systems less stable than those produced by periodic systems.

The use of expansion factors is discouraged because they prohibit accurate 
variance estimation and they no longer have the advantage of simplicity. 
However, there is still a demand for them, and it may take a while to convert 
processing systems to the estimation procedures specified in this chapter. 
Therefore, FIA will continue to offer expansion factors until a demand is 
no longer apparent. The derivation of expansion factors is described in the 
supplementary document “Computation of FIA Plot Expansion Factors” at 
http://srsfia2.fs.fed.us/publicweb/statistics_band/stat_documents.htm.
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4.5 Phase 3

4.5.1 Estimation Procedures Used for FHM (Phase 3) Data

The FHM Program did not utilize any Phase 1 stratification prior to merging 
with FIA. In order to avoid reporting regional and State totals that conflicted 
with those reported by FIA, FHM statistics usually were presented as popu- 
lation-level means based on either simple random sampling or Generalized 
Leased Squares (GLS). Zarnoch and Bechtold (2000) developed one 
such approach based on simple random sampling and ratio-of-means 
estimators. Smith and Conkling (2004) used GLS estimation procedures, 
where population-level current mean values and annual change estimates 
are obtained from linear models for repeated measurements (Gregoire and 
others 1995, Urquhart and others 1993, Van Deusen 1996). The estimate of 
current value is:

                                                                                                      
(4.29)

where

y
t   

= predicted value of the attribute at year t  

b
t-1

 = the mean value of attribute at year t-1

b
1
 = the annual change in y from Year t-1 to Year t

Both b
t-1

 and b
1
 are computed by estimated generalized least squares using 

Proc MIXED® (SAS Institute 1999). 

4.5.2 Combining with Phase 1

Because the FIA and FHM inventory systems have merged, it is now possi- 
ble to combine Phase 1 and Phase 3 data using stratified random estimation 
and double sampling for stratification. We are studying use of Phase 1 strati- 
fication to enhance the estimation of attributes unique to Phase 3 and plan to 
document estimation procedures for attributes specific to Phase 3 in subse- 
quent manuscripts.

4.5.3 Linking with Phase 2

For inventory parameters common to both Phase 2 and Phase 3, usually 
there is no advantage in generating population estimates from the smaller 
Phase 3 subset, because the estimates will not match and the Phase 3 vari- 
ances will be larger due to a reduced n. Phase 3 plots, therefore, should be 
combined with Phase 2 plots when estimating inventory parameters common 
to both phases. 
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For those inventory parameters that are unique to Phase 3, it is possible to 
model relationships between unique Phase 3 parameters and parameters 
common to both Phase 2 and Phase 3. Such models can then be used to 
extrapolate estimates of Phase 3 parameters onto the more intensive Phase 2 
sampling network. 
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